Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.24.22272732

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is known to present with pulmonary and extra-pulmonary organ complications. In comparison with the 2009 pandemic (pH1N1), SARS-CoV-2 infection is likely to lead to more severe disease, with multi-organ effects, including cardiovascular disease. SARS-CoV-2 has been associated with acute and long-term cardiovascular disease, but the molecular changes govern this remain unknown. In this study, we investigated the landscape of cardiac tissues collected at rapid autopsy from SARS-CoV-2, pH1N1, and control patients using targeted spatial transcriptomics approaches. Although SARS-CoV-2 was not detected in cardiac tissue, host transcriptomics showed upregulation of genes associated with DNA damage and repair, heat shock, and M1-like macrophage infiltration in the cardiac tissues of COVID-19 patients. The DNA damage present in the SARS-CoV-2 patient samples, were further confirmed by gamma-H2Ax immunohistochemistry. In comparison, pH1N1 showed upregulation of Interferon-stimulated genes (ISGs), in particular interferon and complement pathways, when compared with COVID-19 patients. These data demonstrate the emergence of distinct transcriptomic profiles in cardiac tissues of SARS-CoV-2 and pH1N1 influenza infection supporting the need for a greater understanding of the effects on extra-pulmonary organs, including the cardiovascular system of COVID-19 patients, to delineate the immunopathobiology of SARS-CoV-2 infection, and long term impact on health.


Subject(s)
Coronavirus Infections , COVID-19 , Cardiovascular Diseases
2.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-45192.v2

ABSTRACT

Rationale: Myocardial injury is significantly and independently associated with mortality in COVID-19 patients. However, the pathogenesis of myocardial injury in COVID-19 is still not clear, and cardiac involvement by SARS-CoV-2 remains a major challenge worldwide. Objective: This histopathological and immunohistochemical study seeks to clarify the pathogenesis and propose a mechanism with pathways involved in COVID-19 myocardial injury. Methods and Results: Postmortem minimally invasive autopsies were performed in six patients who died from COVID-19, and the myocardium samples were compared to a control patient. Histopathological analysis was performed using hematoxylin-eosin and toluidine blue staining. Immunohistochemical (IHC) staining was performed using monoclonal antibodies against the following targets: caspase-1, ICAM-1, TNF-α, IL-4, IL-6, CD163, TGF-β, MMP-9, type 1 and type 3 collagen. The samples were also subjected to a TUNEL assay to detect potential apoptosis. The histopathological analysis showed severe pericellular interstitial edema surrounding each of the cardiomyocytes and higher mast cells count by high-power field in all COVID-19 myocardium samples. The IHC analysis showed increased expression of caspase-1, ICAM-1, IL-4, IL-6, CD163, MMP-9 and type 3 collagen in the COVID-19 patients compared to the control. No difference from the control was observed in expression of TNF-α, TGF-β and type 1 collagen. The TUNEL assay was positive in all the COVID-19 samples confirming the presence of endothelial apoptosis. Conclusions: The pathogenesis of COVID-19 myocardial injury seems to be related with pyroptosis leading to endothelial cell injury and disfunction. The subsequent inflammation with associated interstitial edema could explain the myocardial disfunction and arrythmias in these patients. Our findings also show that COVID-19 myocardial injury may cause myocardial fibrosis in the long term. These patients should be monitored for myocardial dysfunction and arrythmias after the acute phase of COVID-19.


Subject(s)
Fibrosis , Arrhythmias, Cardiac , COVID-19 , Cardiomyopathies , Inflammation , Edema
SELECTION OF CITATIONS
SEARCH DETAIL